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Abstract

Air services agreements are necessary for direct flights between countries and consequently
are central to the operation of the international commercial airline market. These agreements
are bilateral in nature but their coverage is far from universal. To gain insight into why some
agreements are signed but not others, we study a new data set on air services agreements
from the perspective of strategic network formation. Since the signing of an agreement can
have implications for countries other than the two directly involved, this is an environment
where externalities are likely to be important. These externalities also suggest that there are
multiple equilibria for any candidate set of parameters, creating a fundamental identification
problem for any econometric analysis. To address this issue we develop a structural model
based on moment inequalities that uses the concepts of pairwise stability to generate estimating
equations and also introduce methods to implement refinements of pairwise stability. The
network structure is found to be important in determining the choices of countries to form
agreements, and that the jointly optimal network of agreements would be substantially different
than the observed outcome.



1 Introduction

Air services agreements govern the international airline market. In order to have a commercial

flight between two countries, there must be some form of agreement between them, almost al-

ways an air services agreement (ASA). Thus, the existing network of ASAs provide structure for

the pattern of international flights. Given the importance of direct links for international trade

and global commerce more generally, it is somewhat surprising that the coverage of ASAs is rel-

atively incomplete. For example, for the largest 58 countries, just over half of potential bilateral

agreements are realized by an ASA. In contrast, we observe that almost all of these countries are

engaged in bilateral trade. What factors explain the pattern of agreements we observe? Is the

realized set of agreements desirable in some broad sense?

In this paper, we address these questions by studying the incentives to form ASAs. We take

the perspective of the economic literature on strategic network formation, which models the

utility-maximizing choices of agents to form links between each other. In this framework, we

interpret countries as nodes (or agents) and ASAs as links that allow communication between

nodes. Our most basic question is whether countries account for the link structure in choosing

whether to form agreements. Do countries account for the agreements that potential partners

have signed, or do countries just focus on bilateral characteristics? We further ask what elements

of the link structure are important, which then implies what externalities are prevalent in the net-

work of agreements. For instance, are countries particularly interested in connecting to countries

that are well-connected, or are countries primarily interested in serving as hubs between uncon-

nected countries (or both)? Finally, we compute the globally optimal network of agreements, and

compare that to the observed network.

In order to estimate the payoff function of countries and perform counterfactual experiments,

we estimate a structural model of the network formation process. Our model follows closely

the theoretical literature on strategic network formation, such as discussed in Goyal (2007) and

Jackson (2008). In our model, there are no transfers between countries, so a link is formed only

if both agents derive positive payoff from the link. Nash equilbirum in simultaneous choices is
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often of limited use in network formation contexts, so we follow the theoretical literature and

instead study pairwise stable allocations.

Pairwise stability places conditions on how observed choices must generate higher payoffs

than unobserved choices. This revealed preference logic leads to a set of inequality conditions.

Still, predicting outcomes is problematic since for any given set of parameters, there will often

be multiple stable allocations. This problem is common in estimating games with strategic inter-

actions, which often predict multiple equilibria. The typical approach adopted is to restrict the

environment in some dimension to enhance the feasibility of identifying which equilibrium is se-

lected. This generates methods that are either only applicable in low dimensional environments

(small number of agents) or relatively divorced from equilibrium outcomes. Since we are inter-

ested in a setting with a large number of countries and would like to exploit the structure of the

relevant concepts of economic stability, previous techniques are not feasible for our application.

Predicting outcomes directly is complicated by the issue of multiplicity of equilibria. Rather,

we approach the problem by mapping these inequalities directly into their empirical counterparts,

and estimate based on the recent literature that employs moment inequalities, such as Pakes et al.

(2015). This approach deals directly with the identification issue and we are able to identify

a set of parameters that are consistent with the observed outcomes. In practice, we follow a

version of the method of Andrews & Barwick (2012) for constructing confidence intervals in

partially identified models. Inspired by refinements to pairwise stability, such as Nash Pairwise

Stability and strong stability, we develop additional moment inequalities, and we study how

much information these concepts provide in the sense of generating more precise parameter

estimates.

In our model, the country-level payoff to an agreement is a reduced-form function of bilateral

characteristics and network structure. The bilateral characteristics are similar to those found in

the literature on estimating gravity equations (see Head & Meyer, 2014), such as the distance

between countries, and in our preferred specification, we use predictions from a gravity equation

model directly as an explanatory variable. An important element of our paper is the utilization

of useful measures of network structure for capturing the issues of interest. We are motivated by
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the externalities studied in the theoretical literature in network formation, particularly Jackson

& Wolinsky (1996). They discuss the coauthor externality and the information flow externality,

which we interpret in our context as the incentive to be a hub between otherwise unconnected

countries, and the incentive to connect to well-connected countries. For empirical measures of

these features, we turn to the vast literature on social networks (see Prell, 2011; Kolaczyk, 2009).

We further discuss this literature below, but it provides a wide variety of measures of network

features. We rely on betweenness centrality to measure hubbing incentives and eigenvector centrality

to measure the desire for connected partners. For instance, if we observe countries form links that

increase their betweenness centrality, we conclude that the desire to be a hub is important. We

view developing a relationship between theoretical concepts of externality and empirical measure

of network features to be a contribution of our paper.

Our central data set is called the World Air Services Agreements (WASA) database, and is

published by the International Civil Aviation Organization (ICAO), an agency of the United

Nations. The WASA data base aims to catalog all ASAs. Although we focus only on the existence

or non-existence of ASAs, the WASA database contains data on ASAs features, such as whether

the ASA is an Open Sky Agreement (which we discuss further below). The WASA database has

significant drawbacks, such as the fact that it is missing data on a number of agreements, and that

it is difficult to use the data on how long an agreement has been in effect. We discuss these issues

and our response below, but surely, WASA is the best database that we are aware of for studying

ASAs. To reduce the limitations of the WASA dataset, we augment this data with another from

ICOA which tracks the number of flights between countries (TFS dataset). We match WASA up

to trade and characteristic data on country pairs. In order to reduce heterogeneity, we select a

list of 58 countries that are big, wealthy, or both. An advantage of air services agreements is that

they are almost all negotiated bilaterally rather than multilaterally, which makes them similar to

existing network theoretical models. A major exception is the European Union, which functions

as a large multilateral agreement. We impose various adjustments to address this issue. We

use data from 2005. Afterwards, a number of new multilateral agreements appear, which would

complicate our analysis.
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We find that network structure plays a substantial role in determining choices. In particu-

lar, countries form agreements that increase their role as a hub between otherwise unconnected

countries. That is, countries form agreements that raise their betweenness centrality. Additional

moments generated from an empirical analog of Nash pairwise stability play a limited role in

identifying parameters, but are important in some circumstances.

Our computation of the globally optimal network of agreements addresses two externalities.

The first is pairwise, and results from the fact that some agreements do not form even if the

sum of payoffs from the agreement is positive because we do not allow side payments between

countries. The second is more global, and arises from the preference to be a hub. If we address

only the first issue, we would increase the number of agreements since considerations are only

bilateral in nature. Further addressing the network issue causes the social planner to substantially

change the composition of ASA since the externality is now global. Based on a conservative

parameterization of the network variable, we find that these compositional changes are significant

– implying that the observed set of ASA’s differs substantially from the efficient outcome.

A potential concern may be the endoegeneity of the link structure. A country may have many

links for some unobserved reason, and failing to account for this may lead a researcher to falsely

conclude that countries want to link to countries that have many links. This issue is addressed in

relatively few of the papers on strategic network formation that we discuss below. The informa-

tion structure that we impose that generate moment inequalities also generates natural excluded

variables, which we exploit as instruments for the network variables. The results allowing for

endogeneity are similar to our main specification. Other approaches to endogeneity, such as dif-

ferencing across similar observation or developing a control function based historical data, are

the part of our current research.

To be clear, our research has several caveats. We derive the payoffs to countries from revealed

preference about how the countries form agreements, and use this payoff function in calculating

counterfactual payoffs. Thus, we ignore political economy concerns, that might cause countries

to maximize something other than the welfare of their citizens.
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2 Literature Review

The study of social networks is a vast field, stretching across psychology, sociology, anthropology,

economics, statistics and even physics. See Prell (2011) for an excellent overview and a history

of the field, and Kolaczyk (2009) for an overview of statistical issues. The literature is largely

empirical, with substantial effort devoted to collecting data, describing data and creating better

measures of network position, such as the measures of centrality described above. There are many

examples in economics, such as Alatas et al. (2016). An interesting recent example in the field

of industrial organization is Fershtman & Gandal (2011), which studies information spillovers in

the context of networks of open-source computer programmers. An overview of research using

exogenous matching to provide identification appears in Sacerdote (2014), and a more general

overview of the econometric study of networks appears in de Paula (2017).

We distinguish between the literature on social networks, and the literature on strategic network

formation. The social networks literature typically takes the formation of a network as exogenous,

or as a reduced-form function of network variables, whereas the strategic network formation

literature arises from economics and studies the incentives of agents to form links. Thus, it pro-

vides micro-structural models of the formation of networks, and emphasizes stability concepts,

and efficiency issues. An early contribution is Jackson & Wolinsky (1996). Two recent overviews

are Jackson (2008) and Goyal (2007). Naturally, there is substantial overlap between the literatures

on social networks and strategic network formation, in terms of concepts, notation, and empirical

examples, and even authors.

Our project fits into a growing number of papers that attempt to structurally estimate a model

of strategic network formation.1 A seminal contribution is Ho (2009), who estimates a model of

hospitals joining insurance networks, which is motivated by the solution concept of stability to

generate moment inequalities, in the spirit of Pakes et al. (2015). This case is two-sided, in the

sense that hospitals match to insurance companies rather than to other hospitals. Several other
1Note that it is possible to model network formation without modeling what we refer to as strategic network formation.

Exponential Random Graph Models are a popular tool outside of economics for modeling network formation, typically
as a reduced-form function of network features. Chandrasekhar & Jackson (2014) do in fact provide micro-foundations
for a broad class of related models, although their specific assumptions, based on random meetings between groups of
agents, probably does not describe our setting.
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papers discus methods or applications for estimating matching games – see Sorensen (2007), Fox

(2018) and Agarwal (2015).

The last few years have seen rapid growth in methods for estimating strategic network for-

mation models. Graham (2015) discusses this literature. Goldsmith-Pinkham & Imbens (2013)

and Mele (2017) present related methods based on Bayesian statistical estimators that require

repeatedly solving for the choice of each agent. These papers solve their model by assuming that

players make decisions according to an exogenous or random ordering, with myopic decision-

making. Thus, their solution concept does not correspond to a standard solution concept in the

theoretical literature, although Mele (2017) repeatedly cycles through the set of players, which

can be shown to converge to a stable outcome. Hsieh & Lee (2016) also use a Bayesian method

and the concept of a potential game in order to avoid issues of multiple equilibria. All three

of these papers are motivated by friendship networks in surveys of elementary schools in the

AddHealth data.

Sheng (2018) and Miyauchi (2016) use a technique that bears a similarity to the approach of

Ciliberto & Tamer (2009) in the entry literature. For a given set of parameters, Sheng (2018) com-

putes the maximum and minimum of the probability of observing a given link structure, and

uses these with the observed probabilities to form moment inequalities. To lower the compu-

tational complexity of this problem, the paper holds most decisions constant at their observed

outcome, focusing on one “sub-network” at a time. Miyauchi (2016) similarly takes a strategy of

bounding moments from the data, in this case focusing on the case of non-negative externalities

across nodes (which is not satisfied in our model) to simplify the problem.

Leung (2015) models agents in a game of imperfect information, and recommends a two-step

estimator that addresses endogeneity and multiple equilibria in a way similar to Bajari et al.

(2007). Boucher & Mourifié (2017) develops a likelihood framework, focusing on the case of no

externalities between agents. Currarini et al. (2009) develop an estimator based on an underlying

model of search and matching between agents. Badev (2017) does as well, and further studies

the choice of smoking and how it interacts with friendship formation. The vast majority of these

papers study friendship pattern in surveys of school students.
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The paper by de Paula et al. (2018) presents a model for aggregate data of populations that

meet and match. Graham (2017) studies network formation in a model with transferable utility,

and is particularly concerned with the issue of omitted variables. While the paper focuses on the

case in which links are formed just on bilateral characteristics, he introduced network structure

into the problem using a conditioning argument similar to the solution of Chamberlain (1980) for

the fixed-effects logit.

The paper most similar to ours in terms of methods is Uetake (2014), who also uses the

concept of stability to generate moment inequalities drawn directly from the consumer’s utility

functions. Unlike our method, Uetake (2014) simulates the structural error terms in the agent

utility function, which requires specific assumptions in a moment inequality context applied

to games. Also, Uetake focuses on the case where the researcher observes many networks. The

paper studies the propensity of venture capitalists to work with similar venture capitalists (similar

in terms of observable characteristics), and less-so on network structure. Note that all of the

papers discussed are written for cross-sectional data. Fong & Lee (2013) present a method for

studying matching in a dynamic context.

Relative to all of these papers, our project makes several contributions. Our method relies di-

rectly on theoretical stability concepts and so is attractive from the perspective economic theory,

and we are the first to exploit refinements to pairwise stability, such as Nash pairwise stability,

which would be difficult to do in other approaches. Our method can handle large numbers of

agents and our method is relatively fast. Our project emphasizes the use of network variables

such as centrality, and the link to theoretical concepts such as the co-author externality that we

discuss below. Our goal of characterizing externalities and comparing the optimal network to

the observed network is central to the theoretical goals of the literature on strategic network for-

mation. Furthermore, our application to agreements between countries is substantially different

from other papers, and the resulting conclusions that we can reach are thus quite different as well.

Our empirical approach requires strong assumptions on error terms, as in Pakes et al. (2015) and

related papers. But as can be seen, all methods require important restrictions in order to make

progress. We believe that our project represents an important contribution to the discussion of
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appropriate methods for this area, and is complementary to existing work in this area.

Our project also bears on the field of international trade. Some previous theoretical work

studies treaties, typically free-trade agreements, through the prism of network formation games,

such as Goyal & Joshi (2006), and Furusawa & Konishi (2007). There is also a related empirical

literature on the determinants of free-trade agreements, such as Baier & Bergstrand (2004), Egger

et al. (2011) and Chen & Joshi (2010). Employing dichotomous dependent variable models, these

papers examine comparative static predictions based on unilateral best responses. While equi-

librium outcomes are not characterized, this approach implicitly assumes a unique equilibrium,

despite acknowledging a range of externalities associated with preferential trade agreements. For

an overview and critique of this literature see Limão (2016). In contrast, we allow for a multiplic-

ity of equilibria that can arise in setting with externalities and use the equilibrium definition as

the basis for our empirical methodology.

A small empirical literature studies air services agreements, primarily on the topic of Open

Sky Agreements. The existing empirical literature largely takes the air services agreements as

an explanatory variable that can be used to predict outcomes, such as trade, whereas our project

treats the air services agreements as the endogenous variable to be explained. Naturally, the

extent to which air services agreements affect economic outcomes is an important justification for

our study of the formation of agreements, so we view this literature as highly complementary.

Cristea et al. (2017) study the impact on trade of US Open Sky Agreements, using panel-data

techniques. Micco & Serebrisky (2006) also look at this issue. There is a substantial literature on

air services agreements that exists outside of mainstream economics journals, primarily in fields

such as operations research, engineering, and transportation research. One example is Dresner

(2008). A recent report commissioned by the Department of State also finds large benefits to

agreements (Intervistas, 2015).
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3 Industry and Data

Recognizing the importance of the nascent air services industry, a large group of countries met

in Chicago in 1944 to work out an international agreement on how the industry should be man-

aged.2 The so-called Chicago Convention failed to reach a comprehensive international agree-

ment, but instead led to a treaty that established a framework under which subsequent bilateral

agreements would follow, essentially establishing a template for subsequent ASAs. ASAs deter-

mine what rights partner-country airlines have, such as whether to pick up passengers or cargo,

and also determine issues such as what routes are allowed, how many airlines are allowed on the

routes, and whether price changes require government approval.3

Open Sky Agreements are perhaps more widely known than air services agreements, al-

though formally, Open Sky Agreements are a subset of air services agreements. Open Sky Agree-

ments are a particularly liberal version of air services agreements. While the Chicago Convention

provides a formal definition of Open Sky Agreements, few agreements today live up to that def-

inition.4 Open Sky has come to mean agreements that have relatively few restrictions on routes,

cities, airlines and prices. We observe an indicator of whether an agreement is considered Open

Sky, although we do not make use of it in this paper. While Open Sky Agreements are partic-

ularly important between the biggest countries, they appear to be less important outside of that

group, which is the source of most of the variation in our data.

The Chicago Convention envisioned only bilateral agreements, which is helpful for our pur-

poses since multi-lateral agreements are more difficult to model, particularly in the context of

strategic network formation. In practice, there is one multilateral air services agreement, which

is between members of the European Union. Since 1992, EU members have participated in a

multi-lateral, very liberal agreement. However, up until 2002, EU countries continued to sign

bilateral agreements with non-EU countries, rather than having the EU negotiate as a whole.5

2Odoni (2009) provides an excellent discussion of the institutional background for air services agreements.
3Note that these deals are termed international agreements rather than treaties. Agreements are typically easier to

negotiate. For instance, in the United States, agreements do not require congressional approval whereas treaties do.
4For instance, formally, Open Sky would mean allowing domestic cabotage, which is allowing foreign airlines to

pick up and drop off passengers flying within a country. While the US would say that it has signed many Open Sky
agreements, none of them allow that.

5The use of bilateral agreements was subject to a lawsuit filed by the European Commission against member countries.
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We address this issue in the construction of our data. Since 2005, several more multi-lateral air

services agreements have arisen or have been proposed, particularly in Asia, and so we use 2005

data in order to avoid this issue.

The Chicago Convention also established ICAO (named as such later, when it became part of

the United Nations), which coordinates international standards on flight and airport regulations.

ICAO maintains a data set of all ASAs, the World Air Services Agreements (WASA) Database,

that is the centerpiece of our data set. At this stage, we make use of only the existence of an

agreement, and we model whether countries form an agreement or not.6 The WASA database

also lists the date that the agreement was signed, and any amendments, but we found this difficult

to use. If countries signed an agreement and then signed a new agreement, we see only the most

recent agreement, and we have no indication of the existence of the earlier agreement. Whereas

some countries that have liberalized air services have amended the agreement they originally

signed in the 1940’s, others have started over with a new agreement.7 Thus, we ignore the time

dimension of our data set, and treat our data as a cross-section of existing agreements.

The benefit of an agreement is that it allows for direct flights between countries. Travel

between countries would otherwise require connecting flights, which can exist only if connecting

countries have signed ASAs. The effects of an ASA can easily expand beyond air travel. If

air travel supports communication between executives at trading companies, the impacts of an

ASA may be much larger in shipping than air. One question is why countries do not sign

ASAs with every other country. Signing agreements has a cost in terms of administration and

negotiator’s time. Furthermore, a country may be opposed to an ASA in some cases. If one

country believes that its airlines will not be competitive on a particular route with the airlines

The court found that member countries had the right to negotiate bilateral agreements under the Treaty of the European
Union, but that member countries did not have the right to restrict the benefits only to their own national airlines. While
some EU countries have updated their bilateral agreements accordingly, bilateral agreements hold little appeal without
this last element, and agreements since then have tended towards multi-lateral agreements between an outside coun-
try and all EU countries simultaneously. See http://ec.europa.eu/transport/modes/air/international_
aviation/external_aviation_policy/horizontal_agreements_en.htm.

6WASA also contains a list of indicator variables describing the agreement, so it is possible to utilize more information
about agreements in the future. An strand of the strategic network formation literature analyzes the intensity of a link,
and these indicator variables could be understood along these lines.

7For example, our data would indicate that the US and Canada have had an agreement only since 1992, but it is well
known that there was air travel between these two countries long before then.
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of another country, that country may be reluctant to open up that route. In the United States,

the State Department has an Aviation Negotiation division that is dedicated to negotiating ASAs.

Their website highlights the number of Open Sky Agreements they have signed over the last

several years. Naturally, we are not privy to how the division decides with which countries to

negotiate.

Although agreements are public documents, they are surprisingly difficult to observe for the

purpose of creating a database. ICAO relies on countries to self-report any new agreements, but

has recently engaged in a more proactive approach to learn about agreements. Even so, ICAO

representatives believe that the WASA database contains only a subset of existing agreements.8 In

order to address this problem, we have obtained another database from ICAO, the TFS database.

For our purposes, the TFS database indicates which pairs of countries had direct flights at an

annual level, either for people, cargo or mail. ICAO representatives argue that this can be useful

since any direct flight requires some kind of agreement between the two countries in advance.

Note that this database does not allow us to study the details of the agreement, it only determines

the existence of an agreement. The TFS database provides an alternative way to construct the

network of agreement. In general, the network drawn from the TFS database has more links than

WASA, but one is not perfectly contained in the other. In what follows, we provide results based

on a merged TFS and WASA database.

We start with the CEPII data set created for Head et al. (2010), which contains several useful

bilateral variables, such as distance and indicators for a common border and a common language.

There are several matching issues that we address, further described elsewhere. For variables that

vary over time, such as GDP and population, we use the average of 2000-2006. Check this!

To keep our data reasonably homogenous and in order to keep our estimation tractable, we do

not include every country in the world in our data set. In order to choose countries, we take the

top 50 countries by population and the top 50 by GDP and form the union. From this, we drop

8In private communication, an ICAO representative guessed that WASA has between one-half and two-thirds of
agreements, although it is difficult to know. Also, agreements are kept in the database until the participating countries
indicate that they have a new agreement. Thus, WASA contains a number of agreements between countries that no longer
exist. Furthermore, the database contains a number of agreements between EU countries, which we know are superseded
by EU legislation.

11



countries with population less than 500,000 as well as Puerto Rico and Taiwan, whose freedom

to negotiate agreements is unclear.9 We add back in Iceland although its population is less than

500,000 because Iceland has a prominent national airline. Overall, we have a list of 58 countries

from 6 continents. That creates a list 3,306 country-pairs.

From the perspective of the social networks literature, we term the countries as nodes and the

agreements as links. The degree is the number of links to a node. In our computations, we count

links from EU countries to outside countries but not EU countries to other EU countries.10 In our

definition of “EU,” we include the 25 states that joined by 2005 (Bulgaria and Romania joined in

2007) plus Norway, Lichtenstein, Iceland and Switzerland, which signed the Common Aviation

Area (CAA) agreements by 2005 (see European Commission, 2010). Note that Lichtenstein is

dropped from our final data set because it has low population. We do not count Western Baltic

states, which signed CAA agreements in 2010. We assume Russia inherits all of the agreements of

the Soviet Union. The only other post-Soviet state in our sample is Estonia. We assume Estonia

does not inherit these agreements. We assume the Czech Republic and Slovenia inherit all of

the agreements of Czechoslovakia. Since we drop all EU pairs, we end up with 1400 pairs of

countries, or 2,800 decisions by potential partners.

4 Social Network Variables

In our empirical work, we ask how a country values connectedness. We focus on three measures

of connectedness. The first is degree, the number of links a country has formed. While straight-

forward, the literature on social networks has recognized that this measure is often too simple to

capture issues of interest, and has developed a number of other measures, broadly termed cen-

trality measures. Centrality measures capture more complete measures of the location of a node

in a network. For instance, we might be concerned not just with how many links a node has, but

also with whether those links are to nodes that themselves have many links. Similarly, we might

9Dropping countries with low populations eliminates Antigua, the Bahamas, Barbados, Brunei, Equitorial Guinea,
Iceland, Luxemborg, Macau, Malta, St. Kitts, and the Seychelles.

10This reflects the state of the EU in the early 2000s, which we believe best describes our 2005 data. Keep in mind that
non-EU countries have an opportunity for a higher number of links than EU countries, since EU-to-EU links are deleted.
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care whether those links are to nodes that are connected amongst each other, or whether a given

node is the sole pathway between sets of nodes.

Some notation aids in developing these concepts. Let the set of countries be N = {1, . . . , n}.

Let Λ be an n× n matrix. Element {i, j} of matrix Λ equals 1 if countries i and j have an ASA,

and 0 otherwise. Thus, Λ represents the set of links between nodes. The diagonal of Λ is 1 by

assumption. Let the function si(Λ) return the set of countries that are linked to i in network Λ.

That is, si(Λ) = {j : Λij = 1}. Degree is defined as the cardinality of si(Λ).

We would also like an index that reflects not only how many links a country has, but also

how many links the partner countries have, and the partners of those partners in turn. Labeling

this vector of indices as Ceig, we wish to solve:

aCeig = ΛCeig

where a is a proportionality factor. Thus, Ceig(Λ) is an eigenvector of Λ, and a is the correspond-

ing eigenvalue. The convention is to use the highest eigenvector, and term Ceig
i (Λ) the eigenvector

centrality for node i.

Next, we consider the sense in which a node sits between other nodes. A geodesic is a shortest

path between two nodes. There may be multiple geodesics between any two nodes. For instance,

in our data, countries that do not have a link can almost always reach each other in two links, but

there may be multiple paths by which to do so. Let P(k, j) be the number of geodesics between

nodes k and j. Let Pi(k, j) be the number of geodesics between k and j that pass through i.

Betweenness centrality is:

Cbetw
i (Λ) = ∑

{k,j:k 6=i,j 6=i,k 6=j}

Pi(k, j)
P(k, j)

.

To see how these two measures differ, consider Figure 1. The figure has 5 nodes, A− E, and

5 links. The figure displays the nodes and links, as well as the resulting measures of eigenvector

and betweenness centrality.11 We do not display degree, but it is clear: node C has degree 3, node

E has degree 1, and the rest have degree 2. Node C is central in this network, and has the highest

11For clarity, we display Pi(kj) instead of Cbetw
i .
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A (0, 0.497)  

B (0, 0.497)  

C (4, 0.604)   D (3, 0.342)   E (0, 0.155)  

Figure 1
Network Example. Betweenness centrality is underlined, Eigenvector centrality is in italics.

score in both eigenvector and betweenness centrality. However, note the differences between A,

B and D. Nodes A, B and C make up a cluster that generates the high eigenvector scores for A

and B. However, A and B are not hubs – there are no shortest paths between two nodes that run

through A or B. In contrast, D is relatively more isolated than A or B, but is the only route to

E from any other node. Thus, D is higher than A and B in betweenness centrality but lower in

eigenvector centrality.12

Note that there are no microfoundations for these measures. That is, there is no game-theoretic

model of communication across a network or formation of a network from which these measures

arise. However, we believe that these statistics can be interpreted to capture some important

constructs from the theoretical network formation literature. We focus on two models introduced

by Jackson & Wolinsky (1996), the co-author model which focuses on agents that prefer links to

nodes that are not linked to others, and the connections model which emphasizes agents that

benefit from links to nodes with many links.

The model of the co-author externality recognizes that if player A is connected to B and C,

A may be better off if B and C are not connected to each other. In the model, each player has a

12There exists useful extensions of these measures that account for nodes that vary in importance. That is, it is more
valuable to be between important nodes (say, countries with large GDP) than unimportant nodes, and centrality measures
can reflect this. We are further developing this issue.
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limited amount of time to devote to each link, and so the connection between B and C takes away

time from A’s links. In the context of airlines, this is equivalent to saying that A values being a

hub between B and C. We believe that this externality is well captured by betweenness centrality.

If we observe countries forming agreements that tend to raise the country’s betweenness central-

ity, we will say that countries prefer to be hubs, and that the coauthor externality is present. Of

course, we do not restrict the sign of the coefficient on betweenness centrality. It may be that

the link between countries B and C raises growth so much for those countries that traffic to A

actually increases, in which case there is still an externality, but with the opposite sign. Note that

as Jackson & Wolinsky (1996) define the coauthor externality, the agent is worse off whether B

and C form links with each other or anyone else, since any sort of links take time away from their

relationship with A, whereas our concept of hubbing would mean that it is particularly the link

between B and C that hurts A. In this sense our concept of hubbing differs from the coauthor

externality. We believe that betweenness centrality better captures hubbing than the coauthor

externality in this sense.

The connections model recognizes that if player A is connected to B but not C, then A gains

when B connects to C because now A can reach C. This set-up has a natural interpretation

in the airlines context, where more connected paths between any two countries provide more

options for that country-pair market. We believe that this measure is well captured by eigenvector

centrality, which measures the overall connectedness of any given node. In either the co-author or

connections case, if B and C make their decision without accounting for A, we have an externality.

Thus, we look for countries that create agreements to increase their eigenvector or betweenness

centrality in order to infer which of these issues are present.

Now we turn to some simple statistics. The US, Russia and Singapore have the highest degrees

(numbers of links), with 55, 47 and 46 respectively. The highest degrees within the EU are

France and the UK, each with 35.13 The mean number of links per country is 22.44, the standard

deviation is 11.1, the median is 22 and the 25th percentile is 13. Thus, there is substantial variation

13If we counted agreements in the data between EU countries, the most linked country overall would be Switzerland,
and EU countries would make up most of the top 10.
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in the number of links.

Our network is highly connected. Connected paths exist between every node, usually requir-

ing only one or two links. We find that 58% of country-pairs are directly connected, and 41%

of country-pairs require only one intermediate node to reach each other. The remaining 1% of

country-pairs require two links to reach each other, and no country-pair requires more.

Table 1 presents the network statistics that we are interested in. The table is ordered by de-

gree and presents the top 15 countries. It also presents betweenness centrality and eigenvector

centrality, along with the rank of each country in these statistics. For instance, we see in the first

row that the United States has 54 agreements and has the highest values for both betweenness

and eigenvector centrality. The top 4 of each statistic is held by the US, Singapore, Russia and

China almost exclusively. Interestingly, Russia is first in betweenness centrality but 5th in eigen-

vector centrality. Similarly, India is 3rd in Eigenvector centrality but 9th in betweenness. That

is, although India is well connected, it relatively rarely provides an intermediate travel point for

countries that are not otherwise connected. Hong Kong is similar, which ranks 12th in eigenvec-

tor centrality but only 21st in betweenness. While clearly correlated, the measures of centrality

capture different issues, and our project uses these differences to gain insight into the nature of

externalities that govern the structure of ASAs.

One concern we might have is that our measures just count links, as if all links were equal. We

might prefer a measure of betweenness centrality that reflects not only the number of paths that

pass through a node, but also whether those paths are important. For instance, being between

two countries that are close together should matter more than being between countries that are

far apart, or being between countries that trade a lot should matter more than being between

countries that do not. CITE discusses the concept of weighted network statistics, and we use those

ideas to construct weighted versions of betweenness centrality and eigenvector centrality. For

weights, we use both trade and (the inverse of) distance. We discuss the exact calculation in

Appendix A, but ultimately we find that our results are robust to using weighted statistics.
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Country

Value Rank Value Rank Value Rank

United States 54 1 0.97 1 80.98 2

Russia 47 2 0.85 5 86.21 1

Singapore 46 3 0.90 2 28.99 8

China 46 3 0.86 4 64.12 3

India 44 5 0.87 3 25.12 9

Turkey 44 5 0.82 8 45.72 4

Pakistant 44 5 0.85 6 34.71 6

Thailand 43 8 0.84 7 29.55 7

Egypt 40 9 0.79 11 23.18 13

Canada 40 9 0.73 15 38.10 5

Japan 40 9 0.81 9 17.99 17

Hong Kong 38 12 0.79 12 13.26 21

Malaysia 38 12 0.77 13 24.80 10

South Africa 38 12 0.74 14 20.71 14

South Korea 38 12 0.80 10 11.63 23

France 35 16 0.69 19 23.63 11

United Kingdom 35 16 0.69 19 23.63 11

Degree

Eigenvector

Centrality

Betweenness

Centrality

Table 1: Comparing centrality statistics.
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5 Model and Refinements

In this section, we present our theoretical model and we derive inequalities that we bring to

estimation. We discuss refinements to the solution concept in our base model. We also present a

brief subsection on endogeneity in our model.

5.1 Model

This section presents our model of network formation, from which we derive estimating equa-

tions. Let the vector xik describe observable characteristics of i and k, such as GDP and popu-

lation, and bilateral characteristics, such as the product of GDPs, distance, and perhaps bilateral

trade flows. In our preferred specification, we use only two variables for xik, a constant term and

what we term the gravity score, the prediction from a gravity equation model that we estimate on

trade data, that we discuss below. The function ψi(Λ, α) captures the profit to i from a given link

structure Λ, parameterized by α. In our approach, it is a statistic such as betweenness centrality,

i.e., ψi(Λ, α) = αCbetw
i (Λ). The payoff to country i from the network of links Λ is:

Πi(Λ) = ψi (Λ, α) + ∑
k∈si(Λ)

xikβ + εik.

In this expression, the first term represents the overall network benefit whereas the second term

captures the sum of bilateral benefits.

We assume that the agent measures one of the elements of xik with error, which is captured

by εik. That is, we break up xik into {xik1, xik2} where xik1 is the first variable in the vector xik, and

xik2 is the remaining vector of variables. Suppose the measurement error is over the first variable,

xik1. There is some x̃ik1 such that x̃ik1 = xik1 + εik. The country makes its decisions based on

E[xik1|x̃ik1], which is just x̃ik1. Conditional on the agent’s information set, the expectation of εik is

0. That is E[εik|x̃ik1, xik2, Λ] = 0. That is because the country’s decision depends only on x̃ik1, xik2,

not on εik. In fact, conditioning on any subset of the agent’s information leads to the same result.

Pakes et al. (2015) and Dickstein & Morales (2013) further discuss how εik can be interpreted

18



either as expectational on the part of the agent, or measurement error. The implication is that we

can assume that E[εij|xij2, Λ] = 0. Although we cannot condition on xik1 in this statement, the

conditioning on Λ is key to developing moment inequalities.

It is certainly a reasonable assumption that the country cannot predict its payoff from an

agreement exactly, because it faces this measurement error. In different specifications, we use the

gravity score or the product of GDPs as xik1, but any country has difficulty measuring these vari-

ables accurately, and moreover, their mapping into the benefits from an ASA are also uncertain.

However, it differs from the usual treatment of discrete choice variables, which assumes there is

a structural error term that explains why observationally identical agents make different choices,

and would not assume that εik is mean independent of the outcome Λ. Below, we discuss adding

an error term that is known to the country.14 15

Thus, the payoff to i from linking to j is:

Πij = ψi (Λ ∪ {i, j}, α) + ∑
k∈si(Λ∪{i,j})

xikβ + εik.

Here, Λ∪ {i, j} represents the network Λ including a link between countries i and j. If i and j are

already linked in Λ (i.e., Λij = 1), then Λ ∪ {i, j} = Λ. The payoff to not linking to j is:

Πi−j = ψi (Λ− {i, j}, α) + ∑
k∈si(Λ−{i,j})

xikβ + εik.

Naturally, Λ− {i, j} indicates network Λ with Λij = 0, and if Λ does not contain a link between

i and j, then Λ− {i, j} = Λ.

Thus, country i benefits from a link with j if:

πij = Πij −Πi−j

14Dickstein & Morales (2013) suggest using an instrument for the mismeasured variable, in a context with a structural
error term with a normalized variance. As discussed below, we instead normalize the parameter on the mismeasured
variable to 1 in a context with no structural error term.

15We do not take a position on whether Πi(Λ) represents true welfare for the country, or is manipulated by issues
of political economy. We regard it as the country’s objective function, no matter its source. Naturally, we can include
variables representing political economy concerns in xik .
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= ψi (Λ ∪ {i, j}, α)− ψi (Λ− {i, j}, α) + xijβ + εij ≥ 0. (1)

Since the country cannot observe εij, the countries instead expects the payoff from an agreement

to be positive if:

E[πij] = ψi (Λ ∪ {i, j}, α)− ψi (Λ− {i, j}, α) + xijβ ≥ 0

One approach to solving the game might be to specify strategies and then solve for a Nash

equilibrium. However, this approach tends to generate unrealistic equilibria, such as when no

players link with anyone (Myerson, 1977, considers such a game). Instead, the literature has

focused on pairwise stability:

Definition A network Λ is pairwise stable if:

1. E[πij] ≥ 0 ∀ {i, j : Λij = 1}.

2. min{E[πij], E[πji]} ≤ 0 ∀ {i, j : Λij = 0}.

The expectation is taken over εij, which is assumed to be orthogonal to decision-making. Note

that point 1 is a cooperative concept. A network fails pairwise stability if two players would like

to form a link that have not done so. Point 2 considers only a unilateral deviation. That is, a link

does not survive pairwise stability if either player wishes to sever the link.

This formulation implicitly assumes that utility is non-transferable between agents. If one

agent does not benefit from a link, the agent deletes the link and there is no opportunity for the

partner to use his surplus from the link to pay the agent to maintain the link. We find a model

with non-transferable utility more natural in this environment. However, estimating under a

model with transferable utility is feasible, and we do so as a robustness check. With transferable

utility between pairs of agents, the definition would be 1) E[πij + πji] ≥ 0 for all {i, j : Λij = 1}

and E[πij] + E[πji] ≤ 0 for all {i, j : Λij = 0}.16

We now turn to estimation. We exploit the definitions of pairwise stability to generate moment

inequalities, following Pakes et al. (2015). Thus, we can use moment inequalities based on the
16If we instead allowed transfers between any agents, so for instance, agent i could pay j and k based on whether j and

k form a link, then the network would be at its social optimum. We could still form inequalities based on whether the
sum of all payoffs went up or down with each link that we observe or do not.
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definition of pairwise stability:

E
[
ψi (Λ, α)− ψi (Λ− {i, j}, α) + xijβ|Λij = 1, Λ, xij

]
≥ 0 (2)

E
[

min
k∈{i,j}

ψk (Λ ∪ {i, j}, α)− ψk (Λ, α) + xkjβ|Λij = 0, Λ, xij

]
≤ 0 (3)

These equations capture that for any pair with an agreement, we know that both countries prefer

an agreement to no agreement, but that for each pair without an agreement, we know only

that one of the two countries prefers no agreement. We can further interact elements of these

conditions with xij and network statistics to generate more moments.

As is often the case with estimation based on moments, the researcher has some choice in

how to specify moments. For example, consider Equation 2, which states that the average of

payoffs to observed links must be positive. An alternative moment, equally well motivated by

the theoretical model, is that for each country, its lowest payoff among links is positive. Formally:

E
[

min
j∈si(Λ)

ψi (Λ, α)− ψi (Λ− {i, j}, α) + xijβ|Λ, X
]
≥ 0 (4)

Equation 4 should be more informative than Equation 2 because saying that the minimum of a

set is positive is more binding that saying the average is. However, this moment has only one

observation per country, and so is estimated with substantially less precision. We apply both

moments, and we explore which moment is more informative in practice below. We sometimes

refer to the moment inequalities in Equation 4 as the min moment.

5.2 Refinements of pairwise stability

One criticism of pairwise stability is that it allows for over-connected networks. A set of links can

satisfy pairwise stability if agents do not want to sever any single link, even if agents would wish

to sever multiple links. This idea leads to a refinement of pairwise stability called Nash pairwise

stability, and is discussed in Jackson & Wolinsky (1996). Similarly, an agent may benefit from

forming links with multiple agents simultaneously, even if each individual link was not valuable.
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The possibility of deviating from an allocation by adding multiple links is also not captured by

pairwise stability. This concept is addressed by the notion of strong stability (Dutta & Mutuswami,

1997). Such a deviation requires coordinated action between multiple agents, whereas deletion of

multiple links requires only unilateral actions. An advantage of our approach is that it is relatively

easy to develop moment inequalities capturing refinements such as Nash pairwise stability and

strong stability, and to study how these moments affect outcomes. Imposing additional moments

is particularly attractive because moment inequalities frameworks lead to partial identification

and thus wide ranges for parameter estimates. The extra information embedded in stability

refinements could be a valuable source of identification. However, we observe many players

with many potential sets of links that they could add and delete, so it is difficult to consider

every possible such deviation from an allocation. Instead, we consider limited deviations, where

players are allowed to alter a limited number of links.

Some notation is helpful. Let k be a scalar and let S+ik be the set of all combinations of k

elements of N − si(Λ). That is, if k = 1, then S+i1 is the set of individual countries to which i

is not linked, the set of potential additional single links. If k = 2, then S+i2 is the set of all pairs

of countries that i could add. Similarly, let S−ik be the set of all combinations of k elements of

si(Λ). Thus, Si2 would be all pairs of nodes that i is linked to, and thus could potentially delete.

For example, in Figure 1, S−C2 = {AB, AD, DB} and S−E2 = ∅. Denote each element of S+ik as

σmik, m = 1, . . . , #S+ik , and similarly for S−ik . Our first new stability concept is motivated by Nash

pairwise stability and our computational concerns:

Definition A network Λ is pairwise stable with deletion degree K if:

1. Pairwise stability holds, and

2. E[Πi(Λ)] ≥ E[Πi(Λ− σm)] ∀ i = 1, . . . , n, k ≤ K, σmik ∈ S−ik :

The second element of the definition rules out networks in which agents wish to delete sets

of links up to size K. This stability concept rules out more networks than pairwise stability but

less than Nash pairwise stability. Our stability concept is equivalent to Nash pairwise stability if
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K ≥ n. 17

We can generate additional moment inequalities by exploiting conditions from these stability

conditions. For example, if K = 2, we have an observation for each pair of countries that any

country is connected to. Three countries that are each connected to the other two generates three

observations.

E

[
ψi (Λ, α)− ψi (Λ− σ, α) + ∑

j∈σ

xijβ

∣∣∣∣∣σ ∈ Sik, Λ, xij

]
≥ 0 (5)

This approach generates a separate moment for each value of k ≤ K. So we add K − 1

moments to those derived for pairwise stability (plus possible interactions with instrumental

variables such as x).18

Similarly, we can define a stability concept motivated by strong stability:

Definition A network Λ is pairwise stable with addition degree K:

1. Pairwise stability holds, and

2.

min
{

E[Πi(Λ + σm)]− E[Πi(Λ)], E[πji] ∀j ∈ σm
}
≤ 0 ∀ i = 1, . . . , n, ∀k ≤ K, ∀σm ∈ S+ik .

(6)

The second element of the definition says that adding sets of partners reduces the payoff to i,

or i cannot find a set of willing partners. We have written this equation so that the set of links is

not added either because country i does not want to add the set of because one of the potential

partners does not want to link to i. This definition leads to additional moments, analogously

defined to Equation 5.19

17There is no guarantee of existence of a Nash pairwise stable allocations, or our stability concept. A sequence of
bilateral joins could lead to a set of links that the country would like to delete.

18Computationally, we implement Equation 5 by generating a data set that stacks all of the elements in S−ik for each
country i. Even when a few countries have more than 30 links, this data set is not particularly large for k = 2, and this
data set is created in advance of estimation. During estimation, checking linear profit conditions for each observation is
not computationally expensive. Thus, exploring K > 2 appears feasible, although we have not done so yet, for reasons
described with the results.

19The concept of strong stability would allow for deviations that included both deletion and addition of multiple links.
We have not explored this, but developing additional moments expanding on what we have is straightforward.
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In practice, we expect there to be little benefit to setting K higher than 2 or 3. To take an

extreme example, what would be the value of going from K = 44 to K = 45? We observe only

one country with more than 44 links, so we would be forming a moment with one observation,

which will have infinite variance, and thus no power over our parameters. Furthermore, we

expect a very wide set of parameters to satisfy the condition that a country is better off not

deleting 44 of its links, so even if there were a few more countries in this set, the moment would

be of little value.

5.3 Endogeneity

A central question in any paper on network formation should be exogeneity. For example, if we

see that country A forms a link with country B that has many links, we want to know whether

A was attracted to B because it has many links or because there was an unobservable feature of

B that made it attractive both to A and to other countries. Technically, we can allow for an extra

term νij in Equation 1 that is unobserved to the econometrician but observed by agents and is

thus endogenous to the network Λ. The unobserved term εij continues as white noise to both the

econometrician and the agents. The value of a link is then:

πij = ψi (Λ ∪ {i, j}, α)− ψi (Λ− {i, j}, α) + xijβ + νij + εij.

We address this problem with an instrumental variables approach. That is, we exclude the

network variables from the instrument vector for the moment inequalities. Instead, we include

variables that describe the bilateral relationship between the two countries, such as distance and

whether the countries have a trade agreement. We further describe these variables and their

motivation below.

There are several alternative approaches that we might take to addressing endogeneity. For

instance, Pakes et al. (2015) suggest assuming that νij is constant across some observable features

of countries i and j, and then differencing this equation across these countries to eliminate the νij

term. In this approach, we consider pairs of countries with similar such observable characteristics
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but different values of network statistics, and possibly different choices of whether to form an

agreement. Covariation in these variables identifies α in ψ(Λ, α).

An alternative approach to endogeneity relies on a control function. We search for a variable

that proxies for unobserved features of each country. For this, we focus on older trade data – we

are currently using data from the mid-1950’s. This trade data is available in the data set from

Head et al. (2010). Constructing centrality statistics from these data is valuable because they

should be highly correlated with the intrinsic value of trading with these countries currently, but

since these data largely predate the modern commercial airline industry, the statistics should not

be endogenous to events in this industry (NOT IMPLEMENTED YET).20

6 Estimation

This section provides sample analogs of our moments, and then discusses empirical issues with

implementation. A short discussion of asymptotic properties then follows.

6.1 Sample analogs

In order to define the sample analog of the definition of pairwise stability, define I(λij = 1) as

the set of all pairs of countries {i, j} that form an agreement, and I(λij = 0) as the set of all

pairs of countries {i, j} that do not form an agreement. The number of pairs of countries that

form an agreement is na and the number that do not is nna. We define I(λij = 1) and I(λij = 0)

to exclude pairs of countries in which both are members of the EU. Furthermore, let zij be a

vector of instruments for pair i, j. Also, we now impose that α affects the network measures as a

multiplicative coefficient. Then, our sample moments are:

1
na ∑
{i,j}∈I(λij=1)

(
α (ψi (Λ ∪ {i, j})− ψi (Λ− {i, j})) + xijβ

)
zij ≥ 0 (7)

20Naturally, there is a tradeoff between collecting older data that is less affected by the airline industry and more
recent data that is more highly correlated with contemporary outcomes. Also, much older data do not exist for many
country-pairs.
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1
2nna ∑

{i,j}∈I(λij=0)
min

l∈{i,j}

{
α (ψl (Λ ∪ {i, j})− ψl (Λ− {i, j})) + xijβ

}
zij ≤ 0

Hopefully, it is now clear why we require a model in which Λ is exogenous to εij. If not, we

could not assume that εij is mean zero in each equation, in which case each equation would not

hold just in observable variables, and we would not have a basis for estimation.

Moment inequalities lead to partial identification. In order to determine whether a point is

in the confidence interval surrounding the identified set, we follow the algorithm presented in

Andrews & Barwick (2012). Under their framework, we use the objective function that they as-

cribe to Pakes et al. (2015), and we use the “normal approximation” that they suggest, which

assumes that moments are normal for purposes of inference rather than relying on simulation.

The normal approximation substantially decreases the computational time of the estimator. Most

of our parameter results are found by searching for the maximum and minimum of each param-

eter separately, subject to the constraint that the set of parameters must fall within the confidence

intervals. We then report only these maximum and minimums, rather than the shape of the

confidence intervals. Many of our specifications use only two parameters, and so we use grid

searches and graphs of the confidence interval to gain a deeper understanding of our estimator.

A fuller discussion of our estimation approach appears in Appendix B.

In addition to the moments in Equation 7, we utilize two more sets of moments. The first are

derived from the stability refinements discussed in Secton 5.2. Just as Equation 7 is an empirical

counterpart to Equation 2, we develop a sample analog to Equation 5. We implement only the

case for K = 2. Let ñ− be the number of observations for this moment, so ñ− = ∑n
i=1 #S−i2 , the

total number of elements of all sets S−ik for all i = 1, . . . , n.

1
ñ−

n

∑
i=1

∑
m∈S−i2

(
α (ψi (Λ)− ψi (Λ− σmik))− (xij + xil)β

)
zijl ≥ 0, {j, l} = σmik. (8)

In this case, zijl refers to the instrument for the observation in which i is linked to j and l. There
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is an analogous moment derived from the definition of pairwise stability with additional degree

2.

A second set of moments that we utilize are the min moments, as presented in Equation 4.

Averaging over all links as in Equation 7 mixes together many different types of links, both those

that are very valuable and those that are only marginally valuable. We may learn more if we

focus on those that are marginally valuable, that is that the least valuable link has positive value.

Let zm
i be the instrument vector for the min moment applied to observation i. The min moment

is:
1
n

n

∑
i=1

(
min

j∈si(Λ)
ψi (Λ, α)− ψi (Λ− {i, j}, α) + xijβ

)
zm

i ≥ 0 (9)

Not surprisingly, we find that this moment providers a tighter, but imprecise, bound to α and

β.

6.2 Empirical issues

There are several more issues to be dealt with before turning to results. Inspection of the estima-

tion equations shows that if one vector of parameters satisfies the moments, any multiple will as

well. Similarly, setting all parameters to zero will automatically satisfy these moments. That is,

the scale of the parameters is not identified. This is standard in discrete choice models. In logit

and probit models, we typically address this issue by normalizing the variance of the error term

to 1. However, we do not model the distribution of the error term in this paper, so that normal-

ization is not available. Instead, we normalize the coefficient of xij1 to 1. Thus, the remaining

parameters should be interpreted as the importance of that variable relative to xij1. Normalizing

the coefficient on xij1 is natural since our assumptions about measurement error exclude it from

the instrument vector. That is, we do not estimate a coefficient for the variable that we do not

include in the instrument vector.21

It is a challenge to implement estimation via moment inequalities in the context of many re-

21Some care must be taken in choosing xij1 to make sure that we believe that the true coefficient is positive. If we
normalize a negative coefficient to 1, we effectively change the sign of the all the other coefficients. In our case, we
strongly believe that the gravity score or the product of GDPs has a positive effect on the likelihood of an agreement.
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gressors. In part, this is a computational issue. Since the computational algorithm often involves

something like grid search, it can be difficult to implement with many parameters. Also, this

points to an inherent lack of robustness of estimation in the context of partial identification. With

typical estimation based on equalities, such as estimation of a linear model via ordinary least

squares, adding explanatory variables that are orthogonal to existing explanatory variables has

no impact on the coefficients of the existing explanatory variables. However, with moment in-

equalities, we will identify only a range of parameters for this new orthogonal variable, and that

will typically expand the range of parameters that are part of the confidence interval for all of

the other variables. Thus, estimation via moment inequalities is not robust to adding orthogonal

variables in the same sense as standard estimation. For these reasons, it is important to choose

explanatory variables carefully, and with an eye towards parsimony.

In thinking of explanatory variables, we are motivated by the literature on gravity equations

used to explain trade data, since trade and ASAs are both forms of “links” between countries (see

Head & Meyer, 2014). Thus, ideally, we would include all of the explanatory variables that one

finds in standard estimation of gravity equations. However, in practice, this entails a great many

variables, such as distance, and indicators for shared language, colonial history, and free trade

agreements. Much of the gravity literature emphasizes the importance of exporter and importer

fixed effects, which greatly increases the number of parameters to be estimated.

Rather than include all of these variables in our moment inequalities algorithm, we instead

first estimate a gravity equation model on the list of countries we study. That is, we specify the

log of unilateral trade as a linear function of exporter and importer fixed effects, and a series of

explanatory variables found to be important in the gravity equation literature. More discussion

and details on this estimation appear in Appendix C. We refer to the predicted value from this

regression (assuming the shock in the estimation equation is equal to zero) as the gravity score. We

use the gravity score as an important explanatory variable in our moment inequalities estimation

routine. In this way, variables that are known to be important from the gravity literature are used

to predict outcomes in our model of international agreement formation.

Certainly, it is possible that variables such as distance have a different effect on agreement
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formation than they do on trade. We can address this by including both the gravity score and

variables such as distance separately as explanatory variables in our agreement formation model.

That is, they can be separate values of xijk. We experiment with different specifications and

find that these variables have little explanatory value beyond the gravity score. In much of our

analysis, we use the gravity score and a constant term as the only explanatory variables, letting

the gravity score take the position of xij1, the variable over which the countries have measurement

error and with the coefficient set to 1.

In our baseline model, we let the instruments zij be xij2 and (ψi (Λ ∪ {i, j})− ψi (Λ− {i, j})).

However, we can use our specification of the gravity score equation to generate extra instruments.

In particular, the model that derives the moment inequalities requires that the country does

not observe xij1, but it is consistent with the model if the country observes predictors of xij1.

For instance, suppose the gravity score model relies upon exporter and importer fixed effects,

distance between the two countries, and an indicator for sharing a language. The model still

holds if we assume countries know distance and the language indicator, but do not know the

exporter and importer fixed effects, so that the country still has uncertainty about the gravity

score. This setup is realistic because countries surely know distance and language, but perhaps

do not exactly future realizations of trade. Because distance and the language indicator are part

of the country’s information set, we can include the variables in the instrument vector, and thus

generate extra moments. Because we are concerned that the network may be endogenous, we

experiment with dropping the term (ψi (Λ ∪ {i, j})− ψi (Λ− {i, j})) from the instrument matrix,

and instead relying on this expanded instrument vector to provide identification.

Note that we add a constant term to each variable in the instrument vector in order to ensure

that each element of zij is positive, because negative instruments can change the sign of the

moment that they interact with. In addition, we scale all of the network variables by the mean of

betweenness centrality, so all of the same mean and are comparable in variation.
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6.3 Asymptotics

Asymptotic properties are challenging in network context such as ours. We do not provide formal

results, although there are a number of related formal treatments. The study of asymptotic

properties in network models depends on whether one imagines observing many networks of a

given number of agents, or a single network with the number of agents going towards infinity. In

our context with a cross-section of data, it is more natural to think of observing a single network

with an increasing number of agents. In addition, this is the approach taken of all papers we

know of that study the asymptotic properties of gravity equation estimators. See Egger & Staub

(2016), Charbonneau (2017), Jochmans (2017) and Cameron & Miller (2014).

An important variable is the measure of network structure such as betweenness centrality or

eigenvector centrality. One issue is that although this variable differs across observations, it is

always computed from the entire network, and we observe only one network. Menzel (2015)

takes up the estimation of this type of estimator in a more general strategic framework. A second

issue is that as the number of countries goes to infinity, the network structure variables go to

zero.22 One way to imagine addressing this issue is that the network variables depend only on

countries that are relatively close by in some sense, so the variables stay constant after the number

of countries reaches some critical value. However, to be clear, we do not compute our network

variables to reflect this notion.

7 Results

For the baseline results, we compute the network variables but we weight links by the inverse of

log distance, so for instance, being between two countries when your path is very long counts less

towards betweenness than if the path is short. A full description of our computation of weighted

network statistics appears in the appendix. We also impose 5 sets of moments, one for linked

pairs, one for unlinked pairs, one for the min moments, one for linked triplets of countries and

one for unlinked triplets, the last two sets of moments capturing the concepts in Section 5.2. Each

22We thank Antonio Mele for making this point to us.
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Linked pairs Unlinked pairs Countries Linked triplets Unlinked triplets
Observations 1,624 588 58 4,599 6,678

Relevant Equation: 2 3 4 5 6

Table 2: Number of observation in each moment

Explanatory Var. Low Hi Low Hi Low Hi Low Hi Low Hi
ln(Gravity Score) 1 1 1 1 1 1 1 1 1 1
Constant ‐16.612 ‐6.163 ‐6.384 ‐5.954 ‐100 ‐7.787 ‐14.612 ‐9.264 ‐8.279 ‐6.814
Between Cent. 0.191 34.78 1.248 5.506
Eigenvalue Cent. 0.327 1.499 0.127 2.471 ‐0.206 3.818
Closeness Cent. 12.782 100 8.191 100 ‐8.28 3.81
Notes: All specifications are based on five moment equations: Linked pairs, unlinked pairs, the min moments, linked triplets and unlinked 
triplets.  Different number of observations apply to each moment.  The instrument vector consists of explanatory variables, except for 
ln(gravity score).  The table reports the highest and lowest value within the confidence set for each variable.  We do not search past 100, and 
such entries can be regarded as unbounded.

Table 3
Results for different network variables

moment is interacted with a set of instrumental variables, which in the baseline case consists of

all explanatory variables except for gravity score. The number of observations varies across sets

of moments, as described in Table 2.

Table 3 provides the confidence sets for a range of specifications. As noted above, we adopt

the normalization that the coefficient on the log gravity score is unity. The baseline results are

presented in first two columns, where column (1) provides the minimum bound for a parameter

associated with the confidence set – that is, the column reports the argmin for each variable

rather than the vector associated with the minimum. Column (2) reports analogous results for

the maximum.

The first three specifications use only the gravity score, a constant term, and one network

variable: betweenness centrality, eigenvector centrality and closeness centrality. We have not

previously described closeness centrality, but it is the average of the minimum of the distance of

a node to all other nodes. It captures something similar to eigenvector centrality and we use it

as a robustness check for that variable. In each case, we see that the 95% confidence interval for

the coefficient on the network variable (α in α (ψi (Λ ∪ {i, j})− ψi (Λ− {i, j}))) is bounded above

zero, suggesting that network position matters to countries when they choose their agreements.
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In determining the confidence interval, we do not search above 100 or below -100, so reporting

those coefficients is equivalent to saying that the confidence interval is unbounded. Thus, there

is no upper bound on the parameter on closeness centrality.

The last two panels try different combinations of the network variables. The fourth panel

shows that including eigenvector and closeness centrality simultaneously does not change the

results by much. However, the last panel shows that including all three measures simultaneously

does affect the results. In particular, betweenness centrality is still bounded above zero, but the

other two measures of centrality have confidence intervals that bracket zero. Thus, we conclude

that the result that betweenness centrality is important is the most robust of these results.

The next table studies which moment sets provide identifying power. The first panel in

Table 4, labeled baseline repeats the first panel of Table 3. The next three panel provide results with

only three sets of moments rather than five. We always include the moments for linked pairs and

unlinked pairs (based on the equations in 7. Each specifications includes one additional moment,

either the min moment (based on Equation 9) one of the two refinements (based on Equation 8

and the analog for the addition case). The result when including the min moment is exactly

the same as the baseline case, whereas using the other sets of moments (and dropping the min

moment) leads to unbounded results. Thus, while we believe the ability to impose refinements

of pairwise stability is a general advantage of our method, it does not provide any power in

this example. We return to a case where they are useful below. But before doing so, it is useful

consider why refinements of pairwise stability are not helpful. In the case in which the network

payoff is measured by betweenness centrality and the coefficient on the network is positive, there

is no case in which a country would want to delete a pair of links but not each link individually.

While theoretically, it is possible to construct a network in which a country would want to add

two links but not each link independently, it appears that does not characterize our example

because the analogous moment provides no identifying power.

We next consider several robustness checks. In Table 5, the first panel again presents the

baseline result for betweenness centrality using unweighted network variables. The second panel

adds four explanatory variables: the log of distance between the country pairs, the log of the
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Low Hi Low Hi Low Hi Low Hi

ln(Gravity Score) 1 1 1 1 1 1 1 1

Constant ‐16.158 ‐6.158 ‐100 100 ‐100 100 ‐16.158 ‐6.158

Between Cent. 0.185 29.873 ‐100 100 ‐100 100 0.185 29.873

Min Moment

Notes: The first panel is based on five moment equations: Linked pairs, unlinked pairs, the min 

moments, linked triplets and unlinked triplets.  The following three panels include one of the latter 

three moment sets.  Different number of observations apply to each moment.  The instrument vector 

consists of explanatory variables, except for ln(gravity score).  The table reports the highest and lowest 

value within the confidence set for each variable.  We do not search past 100, and such entries can be 

regarded as unbounded.

Explantory Variables

Base Line Deletion Addition

Table 4
Results for different combinations of moments.

product of GDPs, a dummy for having a common language, and a dummy for having a free

trade agreement. Three of the four are not significantly different from zero. The product of GDPs

is bounded below zero. While this result might be surprising on its own, recall that all four of

these variables are predictors in the gravity score. Thus, the negative sign on the log of GDPs

could imply that the total effect is positive but that the variable has a stronger effect on the gravity

score than on value of an agreement. Betweenness centrality is still bounded in the positive range.

Similarly, the fact that distance is not significantly different than zero does not imply that distance

does not matter, only that it is well accounted for via the gravity score. Overall, we conclude that

including these explanatory variables does not strongly affect the results, and that including them

in the gravity score is an effective way to include explanatory variables in our model. We find

similar results for other combinations of explanatory variables.

In the third panel of Table 5, we use the four variables as instruments but not explanatory

variables. Betweenness centrality is again bounded above zero, and the range of the confidence

interval is reduced slightly from the baseline result. In the fourth panel, we drop the network

variable from the list of instruments. Thus, this specification treats the network variable as an

endogenous variable. We include the measures of distance, joint GDP, language and trade agree-

ment in the instrument vector. Thus, we instrument for the network variable with these four

variables. The result is similar to the third panel. While the confidence interval is expanded, the
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Low Hi Low Hi Low Hi Low Hi

ln(Gravity Score) 1 1 1 1 1 1 1 1

Constant ‐16.158 ‐6.158 ‐10.856 ‐7.517 ‐14.508 ‐6.285 ‐15.652 ‐6.258

Between Cent. 0.185 29.873 4.335 13.007 0.341 24.813 0.308 28.296

ln(distance) ‐0.79 0.128

 ln(GDP1*GDP2) ‐0.458 ‐0.185

common language ‐8.911 21.186

trade aggrement ‐7.317 9.636

Without Cent. 

Instrument

Additonal 

Explanatory Vars

Notes: Each panel is based on five moment sets: Linked pairs, unlinked pairs, the min moments, linked triplets and 

unlinked triplets.  Different number of observations apply to each moment.  In the first two panels, the instrument vector 

consists of explanatory variables, except for ln(gravity score).  Panel 2 includes 4 additional variables as explanatory 

variables and instruments.  Panel 3 includes them as instruments.  Panel 4 includes them as instruments but drops the 

network variable as an instrument.  The table reports the highest and lowest value within the confidence set for each 

variable.  We do not search past 100, and such entries can be regarded as unbounded.

Explantory Variables

Base Line

Additional 

Instruments

Table 5
Different variables in instrument vector and explanatory vector

change is not large, and the parameter on betweenness centrality remains significantly greater

than zero.

As a further robustness check, we also consider the case of bilateral transfers, or side pay-

ments, between countries. In this case, pairs of countries form a link if the sum of their payoffs

from the link is positive, and do not form a link if the sum of payoffs is negative. We do not allow

third-party payments, in which a country can pay a pair of countries to form a link or not.23 We

do not impose the min moments in this case, because the minimum across a country’s payoffs

from its links may well be negative in this case (not counting the unobserved side-payment). One

might be concerned, because Table 4 shows that the min moment provides important identify-

ing power in the case without bilateral transfers. However, remarkably, the first panel of Table 6

shows that the result that betweenness centrality is positive is robust to the issue of side payments.

The second and third panels explore dropping one of the moment sets from stability refinement,

and shows that they provide important identifying power in this case. Allowing countries to

delete pairs of countries restricts the coefficient on the moment inequality to be positive.

23Such a model would lead countries to the social optimum. We can consider a model. The inequality would compare
whether total payments to all countries with a link were greater than total payments without the link. We have no
pursued this model.
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Low Hi Low Hi Low Hi

ln(Gravity Score) 1 1 1 1 1 1

Constant ‐20.693 100 ‐20.701 100 ‐100 100
Between Cent. 6.135 13.303 6.14 13.308 ‐100 100

Notes: This model allows for bilateral tranfers between countries.  The first panel is based 

on four moment sets: Linked pairs, unlinked pairs, linked triplets, and unlinked triplets.  The 

second panel drops the moment based on unlinked triplets and the third drops the one 

based on linked triplets.  Different number of observations apply to each moment.  The 

instrument vector consists of explanatory variables, except for ln(gravity score).  The table 

reports the highest and lowest value within the confidence set for each variable.  We do not 

search past 100, and such entries can be regarded as unbounded.

Explantory Variables

Base Line* Deletion Addition

Table 6
Results when countries are allowed to make bilateral side-payments

8 Efficiency of the ASA Network

The results above imply that the form of the network of agreements influences payoffs over and

above bilateral factors alone. The existence of such externalities implies that both the observed

number of agreements and the composition of agreements may not be consistent with an efficient

outcome. To evaluate this issue we must address two main issues. First, what is our measure

of social welfare? Second, since our estimates are set identified, how do we determine which

parameters to use in the evaluation?

To address the first question, we define social welfare globally as the sum across all countries.

S(Λ) =
n

∑
i=1

Πi(Λ) =
n

∑
i=1

ψi (Λ, α) + ∑
k∈si(Λ)

xikβ + εik (10)

This welfare weighs each country equally, which is an assumption given that we do not have a

way of turning utility into dollars . etc.

With this welfare function in hand we can ask: What set of links maximizes total joint surplus?

In answering this question we must account for two types of externalities. The first arises within

potential links – countries do not account for their partner’s benefit from forming a link. So if

the distribution of benefits from link formation are sufficiently asymmetric, then it is possible

35



that only one of the two countries receives a positive pay-off net of the costs of negotiating and

maintaining the agreement. This suggests that some agreements that are potentially beneficial

in an aggregate bilateral sense, nevertheless do not get signed – leading to too few agreements.

Second, countries do not account for the effect on others through network structure. Based on

the results above, countries are particularly interested in forming agreements that tend to make

them hubs – put them on paths that shorten links between otherwise unlinked countries. Since

this is a negative externality there is a tendency for networks to be over-connected in this case

(i.e. forming a link in an attempt to make themselves more central can reduce the payoff to some

other country that was previously a hub, and this negative impact is not included in country

level payoffs.).

To provide insight into the role of each of these externalities we proceed sequentially. First,

we evaluate the net benefit within a bilateral link starting from the observed set of agreements. If

the total bilateral benefit is positive we turn on that link. While this does not generate an efficient

outcome, it does provide a measure of agreements that are not formed due to an asymmetric

distribution of benefits. From this point we then allow the network parameter to play a role. For

every candidate set of agreements we evaluate equation (10) and iterate through links one at a

time, flipping it on or off to see if it improves the outcome. We continue to iterate until there is

no improvement from flipping any link. Starting from many different points and many different

orderings we have found leads to the same result.

In selecting the parameter vector to be used to evaluate equation (10) we are guided by a

desired to provide a lower bound on the role of the network externality. Consequently, we set α

equal to the arg min for betweenness from column 1 of Table 3. The appropriate choice for the

fixed cost of negotiating and maintaining an agreement is determined by following the implica-

tions of the parsimonious model represented by columns (1) and (2) of Table 3. In particular, this

model implies that within an agreement the distribution of benefits is symmetric except for the

network term. Based on this structure we select the fixed cost to be just sufficient to ensure that

no additional agreements would be signed in the absence of the network effect. This benchmark

reflects a setting where the only motivation to an sign agreement is based on bilateral factors (i.e.
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α = 0). Ultimately, we use the parameter vector (1,−10, .81) to perform the welfare analysis.

Using these parameters we are able to evaluate the efficiency of the observed network struc-

ture. One very simple metric is based on the difference in the total number of agreements between

the observed and the efficient outcomes. We calculate that the efficient configuration would re-

quire 41 fewer agreements. The reduction is not surprising since the incentive to become a hub

is associated with an negative externality. However, focusing on the change in the aggregate

number of agreements masks are relatively large change in the composition of agreements – who

should be linked to who.

Examining compositional change gives a better sense of the role of network structure since

changes in one agreement can change the incentives for a social planner to add or delete links

between countries in other parts of the network. We find that difference in the set of agreements

between the observed and efficient outcomes is substantial. In particular, we find that 41 coun-

tries increase their number of links while 14 countries decrease their number of links. The big

increases occur for large countries with relatively few links – Saudi Arabia, Iran, Algeria, Brazil.

In contrast, big decreases are small countries with relatively many links – Singapore, Bahrain,

Oman, Switzerland.

9 Conclusion

To be completed.
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To be completed.
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Appendix B: Computational Details of Estimation Algorithm

Our model generates J moments mj(θ), j = 1, . . . , J. For instance, based on Equation 7, we have
a moment j defined as:

mj(θ) =
1
na ∑
{i,j}∈I(λij=1)

(
α (ψi (Λ ∪ {i, j})− ψi (Λ− {i, j})) + xijβ

)
zij.

We write all moments so they are expected to be positive, so that the moment corresponding
to agreements that are not formed has a negative sign in front of it:

mj(θ) = −
1

2nna ∑
{i,j}∈I(λij=0)

min
l∈{i,j}

{
α (ψl (Λ ∪ {i, j})− ψl (Λ− {i, j})) + xijβ

}
zij.

For a given parameter vector θ, we compute the J × 1 vector of moments m(θ) and the co-
variance matrix of the moments Σ. We then compute m̃(θ) = Σ−1/2m(θ). That is, we studentize
the moments with the Cholesky decomposition of the covariance matrix. We define our objective
function as:

S(θ) =
J

∑
j=1

nj
(
min(m̃j(θ), 0)

)2 .

Andrews & Barwick (2012) term a similar objective function where the moments are studentized
only by the diagonal of the covariance matrix to be the objective function from Pakes et al. (2015).
In order to determine if a parameter vector is in the confidence interval, we must first determine
the degrees of freedom. The degrees of freedom counts the number of binding constraints at a
particular parameter value:

d f (θ) = #
[

j ∈ 1, . . . J :
√

njm̃j(θ) < κ.
]

where # refers to the cardinality function, and κ is a cutoff value. Finally we accept a vector of
parameters into the confidence interval if:

CS = {θ : χ̃2(S(θ), d f (θ)) ≤ 1− α}.

where α is a confidence level. Also, χ̃2 is sum of squared half-normals.
In order to find the end points of the confidence set that we report in tables such as Table 3,

we follow the following algorithm:

• Step 1: Find a value θ0 such that S(θ0) = 0.

– Gradient search works well here.

• Step 2: For each element of θ, find the maximum and minimum value for which there is a
parameter vector in the confidence interval. For instance, to find the maximum value of the
i’th element of θ in the confidence interval, we solve:

max
θ

θi such that χ2(S(θ), d f (θ)) ≤ 1− α.
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– We use penalized simplex search here, using θ0 as a starting value.

– If θi hits ±100, we call θi unbounded in that direction.

In practice, we use κ = 2.35.. That is suggested as in Andrews & Barwick (2012) for the
normal approximation, although other parts of the paper suggest cutoffs as low as 1.5. Higher
numbers create more conservative confidence intervals, so we use 2.35. We use α = 0.05, so we
construct 95% confidence intervals.

Appendix C: Gravity Equation Estimation

This section details our approach to gravity estimation. We take our dependent variable to be the
log of directional trade for each pair of countries, so each pair enters the data set twice, once with
one country as the exporter and once as the importer. We use the average of the log of directional
trade, averaged over five years 2001-2005. The literature on gravity equations suggests a wide set
of explanatory variables that might be included. We focus on five: the log of distance, a dummy
for sharing a border, a dummy for sharing a common official language, a dummy for sharing a
colonial history, and dummy for being in a regional trade agreement. In addition, following the
literature, we include a full set of exporter and importer dummy variables.

In practice, we increment trade flows by 1 in order to address taking log of zero. Some
previous papers address zeros in the dependent variable of a gravity equation in different ways
(for example Santos Silva & Tenreyo, 2006). Because we analyze relatively large countries, the
number of zero in trade are very small. More than half of them involve Israel and a Muslim-
majority country, which is an issue presumably outside of the framework of any gravity model.
As such, we include dummy for cases in which Israel trades with a Muslim-majority country.

Results appear in Table 7. All point in the expected direction, although several are statistically
insignificant. In order to construct our gravity score, we take the predicted value of log exports
and log imports between each pair and sum them. That is, we sum the logged variables, and
label the result the gravity score. It might seem more natural to exponent the predicted values
first and then add them and then perhaps take the log, but the exponent of a predicted value is
not equal to the prediction of the log variable, and furthermore, the gravity score enters in an
essentially reduced-form way, which may address any misspecification on our part.
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Parameter S.E.

ln(Distance) ‐1.002 (0.045)

Shares a border 0.178 (0.154)

Shares an official language 0.560 (0.998)

Colonial relationship 0.518 (0.168)

Shares a regional trade agreement 0.714 (0.097)

Israel‐Muslim majority country ‐12.26 (0.423)

Observations 3,306         
Notes: Dependent variable is log of directional trade flow 

(+1).  Regression includes exporter and importer fixed 

effects.

Table 7
Results from gravity equation estimation
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